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Abstract
We explain simple semi-classical rules to estimate the lifetime of any
given highly excited quantum state of the string spectrum and apply them
to identify new long-lived string states. Using analytic formulae for the
string evolution after joining and interconnection, we study examples of
fundamental cosmic string collisions leading to gravitational collapse. We
find that the interconnection of two strings of equal and opposite maximal
angular momenta and arbitrarily large mass generically leads to the formation
of black holes. (Based on the works (Iengo and Russo 2006 J. High Energy
Phys. JHEP02(2006)041, Iengo and Russo 2006 J. High Energy Phys.
JHEP08(2006)079).)

PACS numbers: 04.70.−s, 98.80.Cq

1. Introduction

Recent works have indicated that in brane inflation models cosmic strings are copiously
produced during the brane collision [3, 4]. This has led to a renewed interest in the physics
of cosmic strings and to consider the exciting possibility that there could be long-lived
fundamental strings of cosmic size (for reviews and more references, see [5, 6]). Finding
such objects could constitute a test of string theory.

The interpretation of a cosmological strings in terms of massive fundamental strings faces
a basic problem, pointed out long ago in [7]: generic massive string states are expected to be
very unstable. It is important to understand which string models can give rise to long-lived
string states. Computing the lifetime of a given massive string state is extremely complicated,
due to the large degeneracy of the decay products. It has been done only in few cases for
especially simple states (see [1, 8–11]). The different calculations performed in these works
give us an insight on what are the dominant decay channels for massive string states and
how the decay rate depends on the mass and on the ‘shape’ of the string. In particular, one
finds that, surprisingly, there are strings which become more stable for larger masses [10, 11].
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Combining the different known results, in the first part of this work we will first derive simple
rules to make a good estimate of the decay rate by splitting and massless radiation, and
hence the lifetime of an arbitrary string state. A direct application of these results will be the
construction of new long-lived string states that can be used in cosmological models.

The dynamics of cosmic strings could also lead to interesting astrophysical events such
as gravitational waves or black hole formation that could result from the evolution of a single
cosmic string [12–14] or from the collision of cosmic strings. In the second part of this
work we will study the latter problem by using the formalism of string splitting, joining and
intercommutation developed in [1]. Surprisingly, we will find that gravitational collapse is a
quite common phenomenon ensuing the encounter of strings of equal and opposite maximal
angular momenta.

2. Decay rate due to breaking

In general, a string can decay either by emitting light particles or by splitting into two massive
strings. Which channel is dominant depends on the string and on the number of uncompact
dimensions. For splitting into two massive strings with large masses, the two outgoing strings
are highly excited string states which admit a classical description. The decay rate in this case
can be estimated by semiclassical arguments.

2.1. Open strings

The probability of breaking for an open string was studied in [15]. There it was suggested
that it is constant along the string and proportional to g2

o . We propose that, more precisely, the
probability of breaking on a given point once in a period is

Po = g2
o

T
, (1)

where T is the period of oscillation (so the probability of breaking at any moment is T Po = g2
o

in agreement with [15]). In the gauge X0 = T
π
τ , we have T = 2πα′M , where M is the string

mass. The decay rate for an open string is thus obtained by multiplying Po by the number of
points of the string L/ls , where L ∼ α′M is the length and ls = √

α′, and by the number of
‘instants’ in one period T/ls . We find

�open ∼=
(

L

ls

) (
T

ls

)
Po

∼= g2
o

L

l2
s

. (2)

This formula precisely reproduces the law �open ∼= g2
oM derived in [8] by the full quantum

calculation of the decay rate for the open string with maximum angular momentum.

2.2. Closed strings

For a closed string, in the absence of D-branes, breaking is possible only if two points of
the string meet. There are several possible configurations, as discussed below. In particular,
if the distance between any two points of the string is �ls at all times, then the string is
‘unbreakable’, meaning that the decay rate into two massive

(
M1,2 � l−1

s

)
string states is

exponentially suppressed, � = O
(
e−cM2)

.

2.2.1. Folded string. The two folds of the closed string are in permanent contact, so the
string can break at any time. We can estimate the decay rate by viewing it as two open strings
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on the top of each other. The breaking can take place only if at a given time the two open
strings break at the same point, up to an uncertainty of order ls . The decay rate is thus

�folded ∼=
(

L

ls

)(
T

ls

)
PoPols ∼= g2

s

L

l3
s M

∼= g2
s l

−1
s , gs = g2

o. (3)

Remarkably, unlike the open string, it is constant independent of M. This semiclassical estimate
precisely reproduces the quantum decay rate obtained in [1, 10] from the exact evaluation of
Im(�M2) at one loop.

2.2.2. String which becomes folded at an instant of time. An explicit example is the squashing
ellipse of [1]. The classical string solution is given by

x1 = 2L cos θ cos τ cos σ, x2 = 2L sin τ cos σ,

x3 = 2L sin θ sin τ sin σ, x0 = 2Lτ,
(4)

where θ is a parameter and σ ∈ [0, 2π). For θ generic, it describes an ellipse that rotates
around one of its axes and simultaneously performs pulsations, with the one of its radii (the
one on the axes of rotation) becoming zero at τ = nπ , n = integer. This string interpolates
between the folded string (θ = 0) and the pulsating circular string (θ = π/2). At each
period of oscillation, there are two times where the string (4) becomes folded and it can break.
Quantum mechanically, the breaking process is important during the time that the smaller
radius of the ellipse has size <ls . This occurs during a time �x0 ∼= ls at each period. So the
fraction of time where the string can break is ls/L. By definition, the decay rate is the number
of events at each period of oscillation of the string. This means that the decay rate will be
given by

�squash ∼= ls

L
�folded ∼= g2

s

1

ls
√

N
. (5)

This is in precise agreement with the explicit calculation of the quantum decay performed in
[1], providing a non-trivial confirmation of the semiclassical rules given above.

2.2.3. Pulsating circular string. This is a circular string which shrinks to a point once in a
period. The decay rate can be calculated just as in the squashing string case, but now taking
into account that the two points where the breaking takes place are arbitrary, since by the time
the string is completely shrunk all points are in contact. This means that there is an additional
factor of L/ls . Thus we get

�pulsating ∼= g2
s

L2

M2l5
s

∼= g2
s l

−1
s , (6)

where we have used that L ∼= l2
s M for the pulsating circular string. Thus the decay rate is the

same as in the folded string case with maximum angular momentum. We have verified this
remarkable fact by the exact quantum calculation [1].

3. Decay rate due to massless emission

The quantum massless emission from a closed string contains contributions from four sectors:
NS–NS, R–NS, NS–R and R–R. The explicit calculation for every channel has been carried
out in the following cases: (a) the string with maximum angular momentum Jmax [10], (b)
the rotating ring [11] and (c) the squashing string [1].
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The rotating ring is a rigid circular string rotating in two orthogonal planes. In this case,
we found [11] that NS–NS emission (which includes graviton, dilaton and antisymmetric
tensor) is dominant, whereas R–NS, NS–R and R–R emissions are suppressed by factors 1/N .
Moreover, in this case the NS–NS emission can be accurately described as a radiation process
from a classical antenna represented by the classical rotating ring solution. The classical
radiation from a source Tµν(x0, �x) in D uncompact spacetime dimensions is given by

� = g2
s

ωD−3

M2

∫
dD−2


∑
ξ,ξ̃

|J |2, J =
∫

dx0 d�x eiωX0−i�p. �Xξµξ̃ νTµν(X0, �X). (7)

For a classical string solution, the energy–momentum tensor is

Tµν =
∫

dσ dτδ(d)(x − X(τ, σ ))∂Xµ∂̄Xν, (8)

so that |J |2 = |JR|2|JL|2 with (gauge ξ 0 = �ξ · �p = 0)

JR =
∫ 2π

0
dσ eip−XR+ �ξ · ∂ �XT

R(σ ), JL =
∫ 2π

0
dσ eip−XL+ �ξ · ∂ �XT

L(σ ), (9)

where we have chosen the frame where the momentum of the emitted massless particle is
pµ = (ω,−ω, �0) and the gauge X0 = α′Mτ = 2

√
α′Nτ . X± refer to the light-cone

coordinates, where p+ = 0. The radiated energy is ω = M2−M ′2
2M

= N0/(2
√

N), where we
have set α′ = 4 and N0 ≡ N − N ′, with M = √

N being the mass of the original state and
M ′ = √

N ′ being the mass of the massive state after the emission.
The classical formula is expected to hold for ω � O(1/

√
α′), i.e. for N0 � √

N . If the
massless NS–NS emission with higher energies is suppressed, then the classical formula can
be used to compute the total radiation emission. In general, since ip−XR,L+(σ ) ∼ iN0fR,L(σ )

in the exponent in (9), then JR,L are exponentially suppressed as a function of N0, unless there
is a saddle point in the integration over σ in (9), or a ‘kink’ in the function fR,L(σ ). A saddle
point (‘cusp’) occurs if ∂σXR+ and ∂σXL+ vanish for some σ , while a kink occurs when there
is discontinuity in the first derivative in the function fR,L(σ ). This is the case of the cusp and
kink string configurations studied in [12, 16, 17]. So let us first assume that there is no cusp or
kink. In this case, JR,L = MhR,L(N0,
), where hR,L(N0,
) are exponentially suppressed
for N0 � 1. We have used the fact that �ξ · ∂ �XT

R,L is generically proportional to M as can be
seen from the Virasoro constraints. Therefore, the decay rate (7) is given by

� ∼= const g2
s M

5−DND−3
0

∫
dD−2
|hR(N0,
)hL(N0,
)|2. (10)

The total rate is obtained by summing over N0 (i.e. all possible energies of the massless
particle). This sum is convergent and one obtains

�total rad ∼= const g2
s M

5−D. (11)

This law has been verified explicitly in [11] by both the classical and quantum calculation for
the rotating ring, which has no cusp or kink. In this case, since decays into massive channels
are exponentially suppressed, �total rad ∼= �total, so the lifetime of the ring state is ∼g−2

s MD−5.
Note that the time for the state to radiate away all of its energy is much longer by a factor
proportional to N = M2.

Let us now consider string configurations with cusps. Whenever the sum over
N0 is convergent for every angle one obtains again, either in the cusp or kink case,
�total rad ∼= const g2

s M
5−D . By comparing with the exact numerical results of the full quantum
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computation, we have verified that this is indeed the behaviour in D = 4 for Jmax and the
squashing string.

Finally, another case where the massless radiation emission can be computed explicitly is
that of an average string state. In this case, one finds [11, 18]

�̄total rad ∼= g2
s M. (12)

This formula is the same even if some dimensions are compact.

4. New examples of long-lived cosmic strings

4.1. Rotating straight string on M4 × S1

Let t, X, Y,Z represent the uncompact coordinates of M4 ((3+1)-dimensional Minkowski
space) and W compact dimensions of radius R. The solution is as follows:

X = L cos τ cos σ, XR(σ−) = 1
2L cos σ−, XL(σ+) = 1

2L cos σ+,

Y = L sin τ cos σ, YR(σ−) = − 1
2L sin σ−, YL(σ+) = 1

2L sin σ+,

W = nRσ, WR(σ−) = 1
2nRσ−, WL(σ+) = 1

2nRσ+,

t = κτ, κ =
√

L2 + n2R2,

(13)

where σ± = σ ± τ, σ ∈ [0, 2π) and n is an integer representing the winding number. The
solution is classically unbreakable for n = 1. Although the string looks folded in 3+1
dimensions—and in fact it looks identical to the unstable rotating string of maximal angular
momentum [1, 10]—it cannot break because all the points of the string are separated in the
internal dimension W . If R � √

α′, then breaking by quantum effects is also suppressed.
It can decay by radiation, with a rate (in four dimensions) � ∼ g2

s M,M ∼ µL, where
µ = (2πα′)−1 is the string tension and gs is the closed string coupling constant. The radiation
is dominated by soft modes with emitted energy ω ∼ 1/L. Thus

− dM

dt
∼ � × ω ∼= c0g

2
s µ, (14)

where c0 is a numerical constant of order 1. Therefore the string takes a time ∼M/g2
s (or

∼L/g2
s ) to substantially decrease its mass.

4.2. Rotating open string which oscillates in extra dimensions

Consider a brane-world model, with a D3-brane placed in the three uncompact directions of
our universe. Let x3 stand for an extra dimension. The open string solution with Dirichlet
boundary conditions at x3 = 0 is given by equation (4), but here σ ∈ [0, π) whereas for the
closed string σ ∈ [0, 2π). The solution represents a string rotating in the plane x1, x2, with
the ends attached to the brane x3 = 0, which at the same time oscillates in the extra dimension
x3. The string can break only at the special times where it lies on the brane, namely τ = nπ .
Using the rules of section 2, one can see that the decay rate by splitting is suppressed for large
L. The string nevertheless loses energy at all times by gravitational radiation. For D = 4,
by summing over N0 we find that �graviton ∼ g2

s

√
N . The lifetime required for a substantial

decrease of the energy is again of order M
/
g2

s .
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Figure 1. Evolution of the open string which results from the joining of two open strings with
maximum and opposite angular momenta.

5. Black hole formation

5.1. By string joining

First, consider two open strings with maximum angular momentum, zero linear momentum
and equal energies described by the solutions: XI,II(τ, σ ) = XI,IIL(τ + σ) + XI,IIL(τ −σ) with

XI(σ, τ ) = L cos σ cos τ, YI(σ, τ ) = L cos σ sin τ,

XIL(s) = L

2
cos s, YIL(s) = L

2
sin s

XII(σ, τ ) = 2L + L cos σ cos τ, YII(σ, τ ) = −L cos σ sin τ,

XIIL(s) = L +
L

2
cos s, YIL(s) = −L

2
sin s

(15)

Strings I and II have equal and opposite angular momenta given by JI = L2/α′, JII = −L2/α′.
As they rotate, the end σ = 0 of string I touches the end σ = π of string II at τ = nπ , n =
integer.

Consider the situation where the strings join at τ = 0. The resulting open string solution
has J = 0, since angular momentum is conserved and the original total angular momentum
of the system is zero. By applying the formulae of [1], we find the solution after joining
X(τ, σ ) = XL(τ + σ) + XL(τ − σ) with

XL(s) =
{

L + L
2 cos 2s −π

2 � s < π
2 ,

−L
2 cos 2s π

2 � s < 3π
2 ,

YL(s) = −L
2 sin 2s. (16)

This solution is shown in figure 1. It describes an open string which at τ = 0 is completely
straight, then it bends and contracts until it becomes a point at τ = π/2. The solution is
periodic with period π .

In the regime that the size of the strings is much larger than the gravitational radius Rs ,
the evolution is governed by the classical string equations of motion. As the open string
reduces its size, gravitational effects become important. A string which reduces to a point
should clearly undergo gravitational collapse. This should happen when the size of the string
becomes smaller than Rs . For a string of length � ∼ M/µ, where µ = 1/(2πα′) is the string
tension, the gravitational radius is Rs ∼ 2Gµ�. Therefore, when the string contracts by a
factor of order (Gµ)−1, gravitational collapse should be inevitable and a horizon will form.

The starting point of the above example involves two open strings, which we know to
be unstable by breaking. The same process can occur for the long-lived strings of section 4,
which have an essentially identical four-dimensional dynamics.
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Figure 2. Interconnection process. When two strings cross, there are two possible ways that they
can interconnect, leading to strings a and b or strings c and d.

5.2. By string interconnection

When two fundamental strings cross, there is a probability given by the string coupling that
the strings will interconnect, as in figure 2. This is a common process in 3+1 dimensions,
where two infinitely long strings always cross for generic initial data. For finite-size strings,
the collision has a cross section of the order of the square of the length of the string.

An interesting question is: what is the probability that a black hole is formed as a result of
the collision. Computing this from string perturbation theory is obviously very complicated, so
we will try to address this question by means of the following experiment: we send two straight
rotating strings against each other, with a random position for the centre-of-mass coordinates
and a random value for the relative orientation (within the range where the interconnection is
possible). After repeating the experiment Ne times, we ask how many of the resulting string
configurations are black holes. We will consider several conditions for black hole formation.
One condition is that one of the two final strings completely lie inside its Schwarzschild
radius, i.e. R(σ) < Rs for all σ , at some time during the evolution. Another condition is that
at some time the average size R̄ of the string lies inside its Schwarzschild radius. Finally,
a third condition is that a segment of the string lies within the Schwarzschild radius. In our
study, the reduction to a small size just follows by the natural shrinking of the string that
results from flat space evolution, without taking into account the gravity. In any of these three
situations, gravitational forces become very strong when the string size approaches Rs and
should enhance the evolution towards the collapse.

5.2.1. Black hole events from interconnection. Consider two open strings of (opposite)
maximal angular momentum in the XY plane, having the same energy, which cross at
some angle at τ = 0. The analytic solutions after the interconnection are obtained by
applying the formulae of [1]. We now consider the evolution of each of the two outgoing
pieces and study the possible black hole formation. It is convenient to express Rs as
Rs = 2(Gµ)M/µ,µ = 1/(2πα′). The fundamental string has a tension µ whose value
could be anywhere between the TeV scale and the Planck scale. In brane inflation models, one
expects a narrower range 10−12 < Gµ < 10−6. The number of black hole events Nbh depends
on the value of Gµ. Table 1 summarizes our results. We see that the condition R(σ) < Rs

for all σ gives less black hole events. This is due to the cases where a small tail of the string
lies outside the Schwarzschild radius. From table 1 one sees that Nbh (computed with either
criterium) has a power-like dependence with Gµ.

A typical black hole event is shown in figure 3. The string after the interconnection has a
kink at τ = 0, which then separates into two kinks moving in opposite directions. If the two
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Figure 3. A string analytic solution resulting from interconnection possibly leading to gravitational
collapse, after shrinking by its own classical evolution.

sigma

X,Y

Figure 4. After interconnection, a part of the string shrinks becoming a point during the time
evolution. In the figure, these are the values of σ for which both X (thicker line) and Y (thinner)
are constant.

Table 1. Number of black hole events in Ne string collisions.

Ne Gµ Nbh (R̄ < Rs) Nbh (R(σ) < Rs)

10 000 10−2 1900–2000 1100–1200
10 000 10−3 300–320 95–110
10 000 10−4 40–46 1–3
50 000 10−5 20–30 0–4
50 000 10−6 3–5 0

pieces that form the string have a comparable size, then the strings after the interconnection
will have a small angular momentum. This is typically the situation leading to a contraction
of the strings to very small size. This figure, however, does not give information on how
the mass is distributed. In fact, as we will see in the following section, at some τ = τ0 an
important fraction of the mass is always concentrated at one point. This fact, which cannot
be seen in figure 3 (but can be seen in figure 4), implies that all the cases of this collision of
Jmax + antiJmax strings should lead to black hole formation. In particular, this indicates that
the cross-section for the scattering of two long strings to form a black hole is essentially given
by the geometric area of the overlap of the two strings, times g4

o = g2
s , where gs being the

closed string coupling constant.

5.2.2. Inevitable collapse in a generic JI = −JII case. In section 5.1, we have already seen
that a black hole will form in the case of the joinings of Jmax and antiJmax strings. In that
case, the string that results from the joining process shrinks, becoming a point at τ = π/2.
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That is, just by the evolution dynamics in a flat space, all the mass concentrates in a region
of the zero size. In the case of interconnection, we find that a finite fraction of its arbitrarily
large mass shrinks to the zero size at some specific time τ0. The collapse of a finite mass to
a point is a clear sign black hole formation, since gravitational effects can only reinforce the
collapse (quantum gravity effects are negligible for large mass black holes, since the horizon
has a size much larger than the Planck scale). Therefore, an arbitrarily large black hole is the
generic result of the interconnection of arbitrarily large strings of equal and opposite maximal
angular momenta. The underlying mechanism is the cancellation of the dependence in σ of
the left part with the right part for some value of τ = τ0. An example is shown in figure 4.

To conclude, it is possible to follow analytically the string evolution after interconnection,
splitting or joining. The evolution exhibits generic features, like kinks. Strings with low
angular momenta, like the circular pulsating string or the configurations studied above, tend
to contract to a very small size, and appear as potential candidates for black holes.
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